トピック |
確率 ボーダー 計算 etc. ダーヨン (2019年07月03日 14時59分) |
別件より派生で計算を主とした堅っ苦しいかもしれないトピックです。 現代は便利になったモンで検索すればボーダーやら期待値やらパッと答えが出てきますが…その答え、大丈夫? 何故、その計算になったの? と、仕組み骨組みの理解を進める事を目的とします。 まー、気楽に来る者拒まずのスタンスでやってければと思いますので興味ある方は是非どうぞ。 |
この投稿に対する 返信を見る (19件) |
■ 33件の投稿があります。 |
【4】 3 2 1 > |
【33】 |
ダーヨン (2019年07月11日 17時28分) |
||
これは 【トピック】 に対する返信です。 | |||
ここまで頭回してR毎の平均出玉と電サポ増加玉の振り分けを換算しようとしたトコで、まてよ…2Rパカパカがあるゾ?と気付きました。 とすると、1Rの平均出玉が合計でXであり2Rの平均出玉Yが総当り数のZ%占めており計算式を求めるとXがYで%が&#$♪*☆々〆〒なので€/?@% はい、バグりましたw ってか面倒にも程がある!もうコレ各当たりの50発上乗せ計算でいいんじゃないかと。 10R 980発 特1.2 6%特2 10% 4R 420発 特1.2 32%特2 40% 2R 90発 特1.2 20%特2 8% 4R通常は両方420発42% 以上のカスタムスペックから各平均出玉を算出(計算式略 特図1.2は387.6 特図2は449 かなり増加したトコで改めてボーダー計算をマメさん仕様の式で。 387.6+449.6×(3.22-1)=1385.7 99.9/(1385.7×4÷1000)=18.02 ボーダー18.02! けっこうイッたな! 普段21〜くらいの甘ソナ打ちだからプラス3回転の台を打ってる結論となりました。 絶対打つレベル程ではないが恒常的にあるなら意欲的に稼働するポジションに入ります自分的には。 |
|||
【32】 |
ダーヨン (2019年07月11日 17時27分) |
||
これは 【トピック】 に対する返信です。 | |||
ホントは増加玉を当たりで得られる玉と電サポ増玉で振り分けなきゃいけないのであろう。 各出玉はいくつになるか? 1Rにつき、打出し玉は最低10発 全てが入るワケではないので10Cといえ平均13発は打ってると思う。 さらにオーバー入賞狙いでワンツー・スリーまで保険として打ってるので計16発が1Rの消費玉。 報酬として吐き出し玉が基本100発あり、オマケポケット入賞とオーバー入賞(成功率40%くらいとする)を加算して113発はあるのか? 仮計算すると1R97発の差玉であり4Rは97×4=388発で370発より18発くらい増えてる。電サポが1回転につき1.0増だとすると50個増の内訳が電サポで32発であり当たり中ワンツーが4Rで18発である。 |
|||
【31】 |
ダーヨン (2019年07月10日 15時31分) |
||
これは 【トピック】 に対する返信です。 | |||
別店では当たり毎の出玉を表示してくれるデータ機設置店。 微細な数字と電サポ中の増加は連チャンしないと加算してくれないシステムらしい。 例 単発当り370発〜電サポ30回じわじわ増え終了間際に420発〜〜今の当たりは370発でした記録 コレで運良く13連したデータが取れたので解析してみました。 13連終了時の総出玉5310発 実際には最後の電サポ増加が加算されてないので仮30発を加算して実質5340発 内訳 2R2回 4R10回 10R1回 各出玉の仮定 2R 50発+電サポ40増=90発 10R930発+電サポ40発増=970発 5340-180-970=4190 4R10回で4190発は1回419発=420発と同等であり370発から50発増えで他のR当たりも50発程度の増加を確認出来たと言っても過言ではない。 と、しました。 尚、2R50発は実戦値 |
|||
【30】 |
ダーヨン (2019年07月10日 15時14分) |
||
これは 【トピック】 に対する返信です。 | |||
暫定的にボーダー計算方法が分かったのでココから現場による実戦値からのボーダー計算です。 甘ソナめ!めちゃくちゃにしてやるゾ! 段階を追って考察 まず電サポ中の増加に関して試行錯誤を繰り返し精度高めるデータを取得するしかない。 ホールのシステムも多種多様にあり普段はドル箱詰む店で打つけどパーソナルシステム導入店でも調査。 当りを繰り返し、下皿に出た玉を落下させパソってみました。 とはいえ、当然ながら電サポ回数〜当り間にムラがあり平均値を求めるのに苦労が。 例 電サポ30回当りでパソったら40個増 電サポ50回当りでパソったら100個増 電サポ10回当りでパソったら30個増 やはりリーチの長さと拾いのタイミングムラ、後は当たり終了直後は上皿ギチギチなので必ずしも下皿に出た玉は増加玉とは限らない (電サポ開始され3個打ち出し3個返しだと下皿に吐き出され3個増えたように見える) 正確な増加数は分からないけど下皿の玉数をざっくり目安の精度は上がったのは実感して終 |
|||
【29】 |
ダーヨン (2019年07月10日 15時11分) |
||
これは 【28】 に対する返信です。 | |||
マメさん 度々の訪問と解説大変ありがたく思います。 たらたらとした自分の解説にて、ボーダー計算の答えに近付きつつあるけどツメが甘いってゆ〜か大雑把とゆ〜か 大きな間違いは指摘されないけど 「アンタのやり方は間違いじゃないけど計算するルートを直せばもっと簡単に答え出るゼ?」ってトコでしょうか 最初から初回当たりの平均出玉計算すれば確かに楽チン。電サポ増減の計算も参考になります。 なんか、もうこの際、ボーダー21.5でいいやw |
|||
【28】 |
マメ♪ (2019年07月10日 14時41分) |
||
これは 【トピック】 に対する返信です。 | |||
ダーヨンさん、ちは♪ 当方、別角度から初当たりの場合分け(通常・確変)をせずに計算してみました。 基本スペックの他に 初当たり時の出玉期待値 337.6個 電サポ中当たり時の出玉期待値 399.6個 時短30回スルー確率 0.74 ((98.9/99.9)^30) 時短中に当たる確率 0.26 (1-0.74) の値を使用。 まず、初当たり時の平均連荘数は「単発当たり かつ 時短スルー」する確率の逆数なので 1 / (0.42*0.74) = 3.22 回。 よって期待出玉数は 337.6 + 399.6*(3.22-1) = 1224.71 個。 次に連荘中の減玉数ですが、 1回の大当たり後の電サポ回数は、 1 確変当たりで平均電サポ回数 29.9 回 2 単発当たりで時短中に当たる時の平均電サポ回数 14.75回 3 単発当たりで時短スルー時の平均電サポ回数 30回 の3つの場合があるので、それぞれに発生する確率を乗じて期待値(回数)を出すと 0.58*29.9 + 0.42*0.26*14.75 + 0.42*0.74*30 = 28.28 回。 これに連荘数を掛けて、連荘中の総電サポ回転数の期待値は 28.28*3.22 = 91.06 回。 したがって、初当たり1回に対する期待出玉数は 1224.71+(91.06*(-0.7)) = 1160.98 個。 となり、約1161個となりました。 ボーダーラインは、 99.9 / (1161*4/1000) = 21.51 で、約21.5回/千円 です。 ※パチマガとは出玉にして4個位違ってしまいました。 ※計算上の結果の小数点第2位以下を四捨五入 p.s. 少々お節介ですが・・・、 >考えてみれば時短に引き戻せる確変は4.22回ではなく3.22回? 時短中に確変に当たった、その回を含めて4.22回でOKです。 >当然、確変の引き戻しと再度単発引きの可能性があるのでざっくり計算すると この場合再度単発引きの後の時短中に当たること、さらにその先、その先、その先・・・・ と考えていかなければならないので、少々難ありです。 初当たり単発時の平均連荘数を求めて計算すれば簡単かと思います。 以上、ご参考までに。 |
|||
この投稿に対する 返信を見る (1件) |
【27】 |
ダーヨン (2019年07月09日 11時23分) |
||
これは 【トピック】 に対する返信です。 | |||
少し詰まってました。 考えてみれば時短に引き戻せる確変は4.22回ではなく3.22回? 時短30回で期待できる玉数 特図2の平均出玉400×3.22 1288発の引戻率26%=334発 が、58%なので194発 と 単発370発の引戻率26%=96発 が、42%なので40発 194+40=234発が時短30で期待出来るので370発と足して 604発 初回確変1516発の58%879発 初回単発604発の42%294発 計1173発 が初当たり時の平均出玉 との計算になってしまいました。 少し合わないな…以前、他の機種ボーダーを求めた時にはピタっと答え出たのに何故か?特図1.2がややこしいのかしら? ホントはこの答えから電サポ-0.7で減算したり引き戻しの引き戻しを考慮して増加したりまだ計算が必要なんでしょうけど、とりま1173発を以って甘ソナ1回当りの平均出玉とします。 コレをボーダーにすると 1173×4=4692円 100回を4.692kで回すと千円あたり100÷4.692=21.3 甘ソナ表記のデータに基づいたボーダー千円ベース/21.3 修正だらけでしょうが自身は妥協しまくってます。 まぁいっか!で済まされるなら次のステップへ進もうかと思います。 |
|||
【26】 |
ダーヨン (2019年07月08日 11時11分) |
||
これは 【トピック】 に対する返信です。 | |||
先に答えありきで計算してますのでボーダー分かってる状態 千円/21.6ベースとは99.9、約100回を250発で割った時に得られる玉数がプラマイゼロになる数字である 100÷21.6=4629 つまり4629円打てば100回転に対する 4629円とは玉数にすると1157発 1157発で100回回せば行って来い。 トントンになる=平均出玉1157発を求めればいいのだろうか。 |
|||
【25】 |
ダーヨン (2019年07月08日 10時54分) |
||
これは 【トピック】 に対する返信です。 | |||
次に初回単発時の平均出玉を算出してみました。 単純に4R370発.に時短30回が付いてくるので370+時短の価値 時短の価値とはいくらか? 先の計算で答え出てますが30回転での引き戻しは26%になります。 当然、確変の引き戻しと再度単発引きの可能性があるのでざっくり計算すると 1516×0.26=394 370×0.26=96 振り分けにより58:42にすると 394×0.58=228 96×0.42=40 228+40=268 と、ここまで計算してる途中で逆に計算してみました。 言葉借りるなら逆行計算でしょうか。 |
|||
【24】 |
ダーヨン (2019年07月08日 10時40分) |
||
これは 【トピック】 に対する返信です。 | |||
修正加えて初回確変の出玉を初回確変割合で再計算してみました。 やり方は多岐あるのでしょうが行き着く先は一緒、という事であえて我流にて。 10R 930発×6%=5580 4R 370発×32%=11840 2R 40発×20%=800 5580+11840+800=18220 初回に確変を特図1.2で58回引けば18220発得られる 1回あたりの出玉を計算 18220÷58=314.1…繰り上げで315 特図2の平均出玉399.6も繰り上げちゃいます 少し修正(ズル)した結果がこちら 400×3.22+315=1602 からの電サポ-0.7 88発減らして 1514発 多分細かな小数点以下の誤差で辿り着く答えに微差が出るのでしょう。 もぅこの際、1516発の答えになった!としちゃいます。 |
|||
© P-WORLD